models
langroid/embedding_models/models.py
            FastEmbedEmbeddingsConfig
¶
    
              Bases: EmbeddingModelsConfig
Config for qdrant/fastembed embeddings, see here: https://github.com/qdrant/fastembed
              EmbeddingFunctionCallable(embed_model, batch_size=512)
¶
    A callable class designed to generate embeddings for a list of texts using the OpenAI or Azure OpenAI API, with automatic retries on failure.
Attributes:
| Name | Type | Description | 
|---|---|---|
| embed_model | EmbeddingModel | An instance of EmbeddingModel that provides configuration and utilities for generating embeddings. | 
Methods:
| Name | Description | 
|---|---|
| __call__ | List[str]) -> Embeddings: Generate embeddings for a list of input texts. | 
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| model |  OpenAIEmbeddings or AzureOpenAIEmbeddings | An instance of OpenAIEmbeddings or AzureOpenAIEmbeddings to use for generating embeddings. | required | 
| batch_size | int | Batch size | 512 | 
Source code in langroid/embedding_models/models.py
                    
              OpenAIEmbeddings(config=OpenAIEmbeddingsConfig())
¶
    
              Bases: EmbeddingModel
Source code in langroid/embedding_models/models.py
                    
            truncate_texts(texts)
¶
    Truncate texts to the embedding model's context length. TODO: Maybe we should show warning, and consider doing T5 summarization?
Source code in langroid/embedding_models/models.py
              
              AzureOpenAIEmbeddings(config=AzureOpenAIEmbeddingsConfig())
¶
    
              Bases: EmbeddingModel
Azure OpenAI embeddings model implementation.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| config | AzureOpenAIEmbeddingsConfig | Configuration for Azure OpenAI embeddings model. | AzureOpenAIEmbeddingsConfig() | 
Raises: ValueError: If required Azure config values are not set.
Source code in langroid/embedding_models/models.py
                    
            truncate_texts(texts)
¶
    Truncate texts to the embedding model's context length. TODO: Maybe we should show warning, and consider doing T5 summarization?
Source code in langroid/embedding_models/models.py
              
            embedding_fn()
¶
    Get the embedding function for Azure OpenAI.
Returns:
| Type | Description | 
|---|---|
| Callable[[List[str]], Embeddings] | Callable that generates embeddings for input texts. | 
Source code in langroid/embedding_models/models.py
              
            
              LlamaCppServerEmbeddings(config=LCSEC())
¶
    
              Bases: EmbeddingModel
Source code in langroid/embedding_models/models.py
                    
              GeminiEmbeddings(config=GeminiEmbeddingsConfig())
¶
    
              Bases: EmbeddingModel
Source code in langroid/embedding_models/models.py
                    
            generate_embeddings(texts)
¶
    Generates embeddings for a list of input texts.
Source code in langroid/embedding_models/models.py
              
            embedding_model(embedding_fn_type='openai')
¶
    Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| embedding_fn_type | str | Type of embedding model to use. Options are: - "openai", - "azure-openai", - "sentencetransformer", or - "fastembed". (others may be added in the future) | 'openai' | 
Returns: EmbeddingModel: The corresponding embedding model class.