Skip to content

tool_message

langroid/agent/tool_message.py

Structured messages to an agent, typically from an LLM, to be handled by an agent. The messages could represent, for example: - information or data given to the agent - request for information or data from the agent - request to run a method of the agent

ToolMessage

Bases: ABC, BaseModel

Abstract Class for a class that defines the structure of a "Tool" message from an LLM. Depending on context, "tools" are also referred to as "plugins", or "function calls" (in the context of OpenAI LLMs). Essentially, they are a way for the LLM to express its intent to run a special function or method. Currently these "tools" are handled by methods of the agent.

Attributes:

Name Type Description
request str

name of agent method to map to.

purpose str

purpose of agent method, expressed in general terms. (This is used when auto-generating the tool instruction to the LLM)

instructions() classmethod

Instructions on tool usage.

Source code in langroid/agent/tool_message.py
@classmethod
def instructions(cls) -> str:
    """
    Instructions on tool usage.
    """
    return ""

langroid_tools_instructions() classmethod

Instructions on tool usage when use_tools == True, i.e. when using langroid built-in tools (as opposed to OpenAI-like function calls/tools).

Source code in langroid/agent/tool_message.py
@classmethod
def langroid_tools_instructions(cls) -> str:
    """
    Instructions on tool usage when `use_tools == True`, i.e.
    when using langroid built-in tools
    (as opposed to OpenAI-like function calls/tools).
    """
    return """
    IMPORTANT: When using this or any other tool/function, you MUST include a 
    `request` field and set it equal to the FUNCTION/TOOL NAME you intend to use.
    """

examples() classmethod

Examples to use in few-shot demos with formatting instructions. Each example can be either: - just a ToolMessage instance, e.g. MyTool(param1=1, param2="hello"), or - a tuple (description, ToolMessage instance), where the description is a natural language "thought" that leads to the tool usage, e.g. ("I want to find the square of 5", SquareTool(num=5)) In some scenarios, including such a description can significantly enhance reliability of tool use. Returns:

Source code in langroid/agent/tool_message.py
@classmethod
def examples(cls) -> List["ToolMessage" | Tuple[str, "ToolMessage"]]:
    """
    Examples to use in few-shot demos with formatting instructions.
    Each example can be either:
    - just a ToolMessage instance, e.g. MyTool(param1=1, param2="hello"), or
    - a tuple (description, ToolMessage instance), where the description is
        a natural language "thought" that leads to the tool usage,
        e.g. ("I want to find the square of 5",  SquareTool(num=5))
        In some scenarios, including such a description can significantly
        enhance reliability of tool use.
    Returns:
    """
    return []

usage_examples(random=False) classmethod

Instruction to the LLM showing examples of how to use the tool-message.

Parameters:

Name Type Description Default
random bool

whether to pick a random example from the list of examples. Set to true when using this to illustrate a dialog between LLM and user. (if false, use ALL examples)

False

Returns: str: examples of how to use the tool/function-call

Source code in langroid/agent/tool_message.py
@classmethod
def usage_examples(cls, random: bool = False) -> str:
    """
    Instruction to the LLM showing examples of how to use the tool-message.

    Args:
        random (bool): whether to pick a random example from the list of examples.
            Set to `true` when using this to illustrate a dialog between LLM and
            user.
            (if false, use ALL examples)
    Returns:
        str: examples of how to use the tool/function-call
    """
    # pick a random example of the fields
    if len(cls.examples()) == 0:
        return ""
    if random:
        examples = [choice(cls.examples())]
    else:
        examples = cls.examples()
    formatted_examples = [
        (
            f"EXAMPLE {i}: (THOUGHT: {ex[0]}) => \n{ex[1].format_example()}"
            if isinstance(ex, tuple)
            else f"EXAMPLE {i}:\n {ex.format_example()}"
        )
        for i, ex in enumerate(examples, 1)
    ]
    return "\n\n".join(formatted_examples)

get_value_of_type(target_type)

Try to find a value of a desired type in the fields of the ToolMessage.

Source code in langroid/agent/tool_message.py
def get_value_of_type(self, target_type: Type[Any]) -> Any:
    """Try to find a value of a desired type in the fields of the ToolMessage."""
    ignore_fields = self.Config.schema_extra["exclude"].union(["request"])
    for field_name in set(self.dict().keys()) - ignore_fields:
        value = getattr(self, field_name)
        if is_instance_of(value, target_type):
            return value
    return None

default_value(f) classmethod

Returns the default value of the given field, for the message-class Args: f (str): field name

Returns:

Name Type Description
Any Any

default value of the field, or None if not set or if the field does not exist.

Source code in langroid/agent/tool_message.py
@classmethod
def default_value(cls, f: str) -> Any:
    """
    Returns the default value of the given field, for the message-class
    Args:
        f (str): field name

    Returns:
        Any: default value of the field, or None if not set or if the
            field does not exist.
    """
    schema = cls.schema()
    properties = schema["properties"]
    return properties.get(f, {}).get("default", None)

format_instructions(tool=False) classmethod

Default Instructions to the LLM showing how to use the tool/function-call. Works for GPT4 but override this for weaker LLMs if needed.

Parameters:

Name Type Description Default
tool bool

instructions for Langroid-native tool use? (e.g. for non-OpenAI LLM) (or else it would be for OpenAI Function calls). Ignored in the default implementation, but can be used in subclasses.

False

Returns: str: instructions on how to use the message

Source code in langroid/agent/tool_message.py
@classmethod
def format_instructions(cls, tool: bool = False) -> str:
    """
    Default Instructions to the LLM showing how to use the tool/function-call.
    Works for GPT4 but override this for weaker LLMs if needed.

    Args:
        tool: instructions for Langroid-native tool use? (e.g. for non-OpenAI LLM)
            (or else it would be for OpenAI Function calls).
            Ignored in the default implementation, but can be used in subclasses.
    Returns:
        str: instructions on how to use the message
    """
    # TODO: when we attempt to use a "simpler schema"
    # (i.e. all nested fields explicit without definitions),
    # we seem to get worse results, so we turn it off for now
    param_dict = (
        # cls.simple_schema() if tool else
        cls.llm_function_schema(request=True).parameters
    )
    examples_str = ""
    if cls.examples():
        examples_str = "EXAMPLES:\n" + cls.usage_examples()
    return textwrap.dedent(
        f"""
        TOOL: {cls.default_value("request")}
        PURPOSE: {cls.default_value("purpose")} 
        JSON FORMAT: {
            json.dumps(param_dict, indent=4)
        }
        {examples_str}
        """.lstrip()
    )

group_format_instructions() staticmethod

Template for instructions for a group of tools. Works with GPT4 but override this for weaker LLMs if needed.

Source code in langroid/agent/tool_message.py
@staticmethod
def group_format_instructions() -> str:
    """Template for instructions for a group of tools.
    Works with GPT4 but override this for weaker LLMs if needed.
    """
    return textwrap.dedent(
        """
        === ALL AVAILABLE TOOLS and THEIR FORMAT INSTRUCTIONS ===
        You have access to the following TOOLS to accomplish your task:

        {format_instructions}

        When one of the above TOOLs is applicable, you must express your 
        request as "TOOL:" followed by the request in the above format.
        """
    )

llm_function_schema(request=False, defaults=True) classmethod

Clean up the schema of the Pydantic class (which can recursively contain other Pydantic classes), to create a version compatible with OpenAI Function-call API.

Adapted from this excellent library: https://github.com/jxnl/instructor/blob/main/instructor/function_calls.py

Parameters:

Name Type Description Default
request bool

whether to include the "request" field in the schema. (we set this to True when using Langroid-native TOOLs as opposed to OpenAI Function calls)

False
defaults bool

whether to include fields with default values in the schema, in the "properties" section.

True

Returns:

Name Type Description
LLMFunctionSpec LLMFunctionSpec

the schema as an LLMFunctionSpec

Source code in langroid/agent/tool_message.py
@classmethod
def llm_function_schema(
    cls,
    request: bool = False,
    defaults: bool = True,
) -> LLMFunctionSpec:
    """
    Clean up the schema of the Pydantic class (which can recursively contain
    other Pydantic classes), to create a version compatible with OpenAI
    Function-call API.

    Adapted from this excellent library:
    https://github.com/jxnl/instructor/blob/main/instructor/function_calls.py

    Args:
        request: whether to include the "request" field in the schema.
            (we set this to True when using Langroid-native TOOLs as opposed to
            OpenAI Function calls)
        defaults: whether to include fields with default values in the schema,
                in the "properties" section.

    Returns:
        LLMFunctionSpec: the schema as an LLMFunctionSpec

    """
    schema = copy.deepcopy(cls.schema())
    docstring = parse(cls.__doc__ or "")
    parameters = {
        k: v for k, v in schema.items() if k not in ("title", "description")
    }
    for param in docstring.params:
        if (name := param.arg_name) in parameters["properties"] and (
            description := param.description
        ):
            if "description" not in parameters["properties"][name]:
                parameters["properties"][name]["description"] = description

    excludes = cls.Config.schema_extra["exclude"]
    if not request:
        excludes = excludes.union({"request"})
    # exclude 'excludes' from parameters["properties"]:
    parameters["properties"] = {
        field: details
        for field, details in parameters["properties"].items()
        if field not in excludes and (defaults or details.get("default") is None)
    }
    parameters["required"] = sorted(
        k
        for k, v in parameters["properties"].items()
        if ("default" not in v and k not in excludes)
    )
    if request:
        parameters["required"].append("request")

        # If request is present it must match the default value
        # Similar to defining request as a literal type
        parameters["request"] = {
            "enum": [cls.default_value("request")],
            "type": "string",
        }

    if "description" not in schema:
        if docstring.short_description:
            schema["description"] = docstring.short_description
        else:
            schema["description"] = (
                f"Correctly extracted `{cls.__name__}` with all "
                f"the required parameters with correct types"
            )

    # Handle nested ToolMessage fields
    if "definitions" in parameters:
        for v in parameters["definitions"].values():
            if "exclude" in v:
                v.pop("exclude")

                remove_if_exists("purpose", v["properties"])
                remove_if_exists("id", v["properties"])
                if (
                    "request" in v["properties"]
                    and "default" in v["properties"]["request"]
                ):
                    if "required" not in v:
                        v["required"] = []
                    v["required"].append("request")
                    v["properties"]["request"] = {
                        "type": "string",
                        "enum": [v["properties"]["request"]["default"]],
                    }

    parameters.pop("exclude")
    _recursive_purge_dict_key(parameters, "title")
    _recursive_purge_dict_key(parameters, "additionalProperties")
    return LLMFunctionSpec(
        name=cls.default_value("request"),
        description=cls.default_value("purpose"),
        parameters=parameters,
    )

simple_schema() classmethod

Return a simplified schema for the message, with only the request and required fields. Returns: Dict[str, Any]: simplified schema

Source code in langroid/agent/tool_message.py
@classmethod
def simple_schema(cls) -> Dict[str, Any]:
    """
    Return a simplified schema for the message, with only the request and
    required fields.
    Returns:
        Dict[str, Any]: simplified schema
    """
    schema = generate_simple_schema(
        cls,
        exclude=list(cls.Config.schema_extra["exclude"]),
    )
    return schema

remove_if_exists(k, d)

Removes key k from d if present.

Source code in langroid/agent/tool_message.py
def remove_if_exists(k: K, d: dict[K, Any]) -> None:
    """Removes key `k` from `d` if present."""
    if k in d:
        d.pop(k)

format_schema_for_strict(schema)

Recursively set additionalProperties to False and replace oneOf and allOf with anyOf, required for OpenAI structured outputs. Additionally, remove all defaults and set all fields to required. This may not be equivalent to the original schema.

Source code in langroid/agent/tool_message.py
def format_schema_for_strict(schema: Any) -> None:
    """
    Recursively set additionalProperties to False and replace
    oneOf and allOf with anyOf, required for OpenAI structured outputs.
    Additionally, remove all defaults and set all fields to required.
    This may not be equivalent to the original schema.
    """
    if isinstance(schema, dict):
        if "type" in schema and schema["type"] == "object":
            schema["additionalProperties"] = False

            if "properties" in schema:
                properties = schema["properties"]
                all_properties = list(properties.keys())
                for k, v in properties.items():
                    if "default" in v:
                        if k == "request":
                            v["enum"] = [v["default"]]

                        v.pop("default")
                schema["required"] = all_properties
            else:
                schema["properties"] = {}
                schema["required"] = []

        anyOf = (
            schema.get("oneOf", []) + schema.get("allOf", []) + schema.get("anyOf", [])
        )
        if "allOf" in schema or "oneOf" in schema or "anyOf" in schema:
            schema["anyOf"] = anyOf

        remove_if_exists("allOf", schema)
        remove_if_exists("oneOf", schema)

        for v in schema.values():
            format_schema_for_strict(v)
    elif isinstance(schema, list):
        for v in schema:
            format_schema_for_strict(v)