chat_agent
ChatAgentConfig
¶
Bases: AgentConfig
Configuration for ChatAgent
Attributes:
system_message: system message to include in message sequence
(typically defines role and task of agent).
Used only if task
is not specified in the constructor.
user_message: user message to include in message sequence.
Used only if task
is not specified in the constructor.
use_tools: whether to use our own ToolMessages mechanism
use_functions_api: whether to use functions/tools native to the LLM API
(e.g. OpenAI's function_call
or tool_call
mechanism)
use_tools_api: When use_functions_api
is True, if this is also True,
the OpenAI tool-call API is used, rather than the older/deprecated
function-call API. However the tool-call API has some tricky aspects,
hence we set this to False by default.
strict_recovery: whether to enable strict schema recovery when there
is a tool-generation error.
enable_orchestration_tool_handling: whether to enable handling of orchestration
tools, e.g. ForwardTool, DoneTool, PassTool, etc.
output_format: When supported by the LLM (certain OpenAI LLMs
and local LLMs served by providers such as vLLM), ensures
that the output is a JSON matching the corresponding
schema via grammar-based decoding
handle_output_format: When output_format
is a ToolMessage
T,
controls whether T is "enabled for handling".
use_output_format: When output_format
is a ToolMessage
T,
controls whether T is "enabled for use" (by LLM) and
instructions on using T are added to the system message.
instructions_output_format: Controls whether we generate instructions for
output_format
in the system message.
use_tools_on_output_format: Controls whether to automatically switch
to the Langroid-native tools mechanism when output_format
is set.
Note that LLMs may generate tool calls which do not belong to
output_format
even when strict JSON mode is enabled, so this should be
enabled when such tool calls are not desired.
output_format_include_defaults: Whether to include fields with default arguments
in the output schema
ChatAgent(config=ChatAgentConfig(), task=None)
¶
Bases: Agent
Chat Agent interacting with external env
(could be human, or external tools).
The agent (the LLM actually) is provided with an optional "Task Spec",
which is a sequence of LLMMessage
s. These are used to initialize
the task_messages
of the agent.
In most applications we will use a ChatAgent
rather than a bare Agent
.
The Agent
class mainly exists to hold various common methods and attributes.
One difference between ChatAgent
and Agent
is that ChatAgent
's
llm_response
method uses "chat mode" API (i.e. one that takes a
message sequence rather than a single message),
whereas the same method in the Agent
class uses "completion mode" API (i.e. one
that takes a single message).
config: settings for the agent
Source code in langroid/agent/chat_agent.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
task_messages
property
¶
The task messages are the initial messages that define the task of the agent. There will be at least a system message plus possibly a user msg. Returns: List[LLMMessage]: the task messages
all_llm_tools_known
property
¶
All known tools; we include output_format
if it is a ToolMessage
.
init_state()
¶
Initialize the state of the agent. Just conversation state here, but subclasses can override this to initialize other state.
Source code in langroid/agent/chat_agent.py
from_id(id)
staticmethod
¶
Get an agent from its ID Args: agent_id (str): ID of the agent Returns: ChatAgent: The agent with the given ID
clone(i=0)
¶
Create i'th clone of this agent, ensuring tool use/handling is cloned. Important: We assume all member variables are in the init method here and in the Agent class. TODO: We are attempting to clone an agent after its state has been changed in possibly many ways. Below is an imperfect solution. Caution advised. Revisit later.
Source code in langroid/agent/chat_agent.py
clear_history(start=-2)
¶
Clear the message history, starting at the index start
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start
|
int
|
index of first message to delete; default = -2 (i.e. delete last 2 messages, typically these are the last user and assistant messages) |
-2
|
Source code in langroid/agent/chat_agent.py
update_history(message, response)
¶
Update the message history with the latest user message and LLM response. Args: message (str): user message response: (str): LLM response
Source code in langroid/agent/chat_agent.py
tool_format_rules()
¶
Specification of tool formatting rules
(typically JSON-based but can be non-JSON, e.g. XMLToolMessage),
based on the currently enabled usable ToolMessage
s
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
formatting rules |
Source code in langroid/agent/chat_agent.py
tool_instructions()
¶
Instructions for tools or function-calls, for enabled and usable Tools. These are inserted into system prompt regardless of whether we are using our own ToolMessage mechanism or the LLM's function-call mechanism.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
concatenation of instructions for all usable tools |
Source code in langroid/agent/chat_agent.py
augment_system_message(message)
¶
Augment the system message with the given message. Args: message (str): system message
last_message_with_role(role)
¶
from message_history
, return the last message with role role
Source code in langroid/agent/chat_agent.py
nth_message_idx_with_role(role, n)
¶
Index of n
th message in message_history, with specified role.
(n is assumed to be 1-based, i.e. 1 is the first message with that role).
Return -1 if not found. Index = 0 is the first message in the history.
Source code in langroid/agent/chat_agent.py
update_last_message(message, role=Role.USER)
¶
Update the last message that has role role
in the message history.
Useful when we want to replace a long user prompt, that may contain context
documents plus a question, with just the question.
Args:
message (str): new message to replace with
role (str): role of message to replace
Source code in langroid/agent/chat_agent.py
delete_last_message(role=Role.USER)
¶
Delete the last message that has role role
from the message history.
Args:
role (str): role of message to delete
Source code in langroid/agent/chat_agent.py
unhandled_tools()
¶
The set of tools that are known but not handled. Useful in task flow: an agent can refuse to accept an incoming msg when it only has unhandled tools.
Source code in langroid/agent/chat_agent.py
enable_message(message_class, use=True, handle=True, force=False, require_recipient=False, include_defaults=True)
¶
Add the tool (message class) to the agent, and enable either - tool USE (i.e. the LLM can generate JSON to use this tool), - tool HANDLING (i.e. the agent can handle JSON from this tool),
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message_class
|
Optional[Type[ToolMessage] | List[Type[ToolMessage]]]
|
The ToolMessage class OR List of such classes to enable, for USE, or HANDLING, or both. If this is a list of ToolMessage classes, then the remain args are applied to all classes. Optional; if None, then apply the enabling to all tools in the agent's toolset that have been enabled so far. |
required |
use
|
bool
|
IF True, allow the agent (LLM) to use this tool (or all tools), else disallow |
True
|
handle
|
bool
|
if True, allow the agent (LLM) to handle (i.e. respond to) this tool (or all tools) |
True
|
force
|
bool
|
whether to FORCE the agent (LLM) to USE the specific
tool represented by |
False
|
require_recipient
|
bool
|
whether to require that recipient be specified
when using the tool message (only applies if |
False
|
include_defaults
|
bool
|
whether to include fields that have default values, in the "properties" section of the JSON format instructions. (Normally the OpenAI completion API ignores these fields, but the Assistant fn-calling seems to pay attn to these, and if we don't want this, we should set this to False.) |
True
|
Source code in langroid/agent/chat_agent.py
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
|
set_output_format(output_type, force_tools=None, use=None, handle=None, instructions=None, is_copy=False)
¶
Sets output_format
to output_type
and, if force_tools
is enabled,
switches to the native Langroid tools mechanism to ensure that no tool
calls not of output_type
are generated. By default, force_tools
follows the use_tools_on_output_format
parameter in the config.
If output_type
is None, restores to the state prior to setting
output_format
.
If use
, we enable use of output_type
when it is a subclass
of ToolMesage
. Note that this primarily controls instruction
generation: the model will always generate output_type
regardless
of whether use
is set. Defaults to the use_output_format
parameter in the config. Similarly, handling of output_type
is
controlled by handle
, which defaults to the
handle_output_format
parameter in the config.
instructions
controls whether we generate instructions specifying
the output format schema. Defaults to the instructions_output_format
parameter in the config.
is_copy
is set when called via __getitem__
. In that case, we must
copy certain fields to ensure that we do not overwrite the main agent's
setings.
Source code in langroid/agent/chat_agent.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
|
disable_message_handling(message_class=None)
¶
Disable this agent from RESPONDING to a message_class
(Tool). If
message_class
is None, then disable this agent from responding to ALL.
Args:
message_class: The ToolMessage class to disable; Optional.
Source code in langroid/agent/chat_agent.py
disable_message_use(message_class)
¶
Disable this agent from USING a message class (Tool).
If message_class
is None, then disable this agent from USING ALL tools.
Args:
message_class: The ToolMessage class to disable.
If None, disable all.
Source code in langroid/agent/chat_agent.py
disable_message_use_except(message_class)
¶
Disable this agent from USING ALL messages EXCEPT a message class (Tool) Args: message_class: The only ToolMessage class to allow
Source code in langroid/agent/chat_agent.py
get_tool_messages(msg, all_tools=False)
¶
Extracts messages and tracks whether any errors occured. If strict mode was enabled, disables it for the tool, else triggers strict recovery.
Source code in langroid/agent/chat_agent.py
truncate_message(idx, tokens=5, warning='...[Contents truncated!]')
¶
Truncate message at idx in msg history to tokens
tokens
Source code in langroid/agent/chat_agent.py
llm_response(message=None)
¶
Respond to a single user message, appended to the message history, in "chat" mode Args: message (str|ChatDocument): message or ChatDocument object to respond to. If None, use the self.task_messages Returns: LLM response as a ChatDocument object
Source code in langroid/agent/chat_agent.py
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 |
|
llm_response_async(message=None)
async
¶
Async version of llm_response
. See there for details.
Source code in langroid/agent/chat_agent.py
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 |
|
init_message_history()
¶
Initialize the message history with the system message and user message
Source code in langroid/agent/chat_agent.py
llm_response_messages(messages, output_len=None, tool_choice='auto')
¶
Respond to a series of messages, e.g. with OpenAI ChatCompletion Args: messages: seq of messages (with role, content fields) sent to LLM output_len: max number of tokens expected in response. If None, use the LLM's default max_output_tokens. Returns: Document (i.e. with fields "content", "metadata")
Source code in langroid/agent/chat_agent.py
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 |
|
llm_response_messages_async(messages, output_len=None, tool_choice='auto')
async
¶
Async version of llm_response_messages
. See there for details.
Source code in langroid/agent/chat_agent.py
llm_response_forget(message=None)
¶
LLM Response to single message, and restore message_history. In effect a "one-off" message & response that leaves agent message history state intact.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message
|
str | ChatDocument
|
message to respond to. |
None
|
Returns:
Type | Description |
---|---|
ChatDocument
|
A Document object with the response. |
Source code in langroid/agent/chat_agent.py
llm_response_forget_async(message=None)
async
¶
Async version of llm_response_forget
. See there for details.
Source code in langroid/agent/chat_agent.py
chat_num_tokens(messages=None)
¶
Total number of tokens in the message history so far.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
Optional[List[LLMMessage]]
|
if provided, compute the number of tokens in this list of messages, rather than the current message history. |
None
|
Returns: int: number of tokens in message history
Source code in langroid/agent/chat_agent.py
message_history_str(i=None)
¶
Return a string representation of the message history Args: i: if provided, return only the i-th message when i is postive, or last k messages when i = -k. Returns: