chat_agent
ChatAgentConfig
¶
Bases: AgentConfig
Configuration for ChatAgent
Attributes:
| Name | Type | Description |
|---|---|---|
system_message |
str
|
system message to include in message sequence
(typically defines role and task of agent).
Used only if |
user_message |
Optional[str]
|
user message to include in message sequence.
Used only if |
use_tools |
bool
|
whether to use our own ToolMessages mechanism |
handle_llm_no_tool |
Any
|
desired agent_response when LLM generates non-tool msg. |
use_functions_api |
bool
|
whether to use functions/tools native to the LLM API
(e.g. OpenAI's |
use_tools_api |
bool
|
When |
strict_recovery |
bool
|
whether to enable strict schema recovery when there is a tool-generation error. |
enable_orchestration_tool_handling |
bool
|
whether to enable handling of orchestration tools, e.g. ForwardTool, DoneTool, PassTool, etc. |
output_format |
Optional[type]
|
When supported by the LLM (certain OpenAI LLMs and local LLMs served by providers such as vLLM), ensures that the output is a JSON matching the corresponding schema via grammar-based decoding |
handle_output_format |
bool
|
When |
use_output_format |
bool
|
When |
instructions_output_format |
bool
|
Controls whether we generate instructions for
|
use_tools_on_output_format |
bool
|
Controls whether to automatically switch
to the Langroid-native tools mechanism when |
output_format_include_defaults |
bool
|
Whether to include fields with default arguments in the output schema |
full_citations |
bool
|
Whether to show source reference citation + content for each citation, or just the main reference citation. |
search_for_tools_everywhere |
bool
|
Whether to search for tools everywhere, or only in specific LLM response elements based on use_tools / use_functions_api / use_tools_api config settings. |
recognize_recipient_in_content |
bool
|
Whether to parse LLM response text content
for recipient routing patterns, specifically:
- |
ChatAgent(config=ChatAgentConfig(), task=None)
¶
Bases: Agent
Chat Agent interacting with external env
(could be human, or external tools).
The agent (the LLM actually) is provided with an optional "Task Spec",
which is a sequence of LLMMessages. These are used to initialize
the task_messages of the agent.
In most applications we will use a ChatAgent rather than a bare Agent.
The Agent class mainly exists to hold various common methods and attributes.
One difference between ChatAgent and Agent is that ChatAgent's
llm_response method uses "chat mode" API (i.e. one that takes a
message sequence rather than a single message),
whereas the same method in the Agent class uses "completion mode" API (i.e. one
that takes a single message).
config: settings for the agent
Source code in langroid/agent/chat_agent.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | |
task_messages
property
¶
The task messages are the initial messages that define the task of the agent. There will be at least a system message plus possibly a user msg. Returns: List[LLMMessage]: the task messages
all_llm_tools_known
property
¶
All known tools; we include output_format if it is a ToolMessage.
init_state()
¶
Initialize the state of the agent. Just conversation state here, but subclasses can override this to initialize other state.
Source code in langroid/agent/chat_agent.py
from_id(id)
staticmethod
¶
Get an agent from its ID Args: agent_id (str): ID of the agent Returns: ChatAgent: The agent with the given ID
clone(i=0)
¶
Create i'th clone of this agent, ensuring tool use/handling is cloned. Important: We assume all member variables are in the init method here and in the Agent class. TODO: We are attempting to clone an agent after its state has been changed in possibly many ways. Below is an imperfect solution. Caution advised. Revisit later.
Source code in langroid/agent/chat_agent.py
clear_history(start=-2, end=-1)
¶
Clear the message history, deleting messages from index start,
up to index end.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
start
|
int
|
index of first message to delete; default = -2 (i.e. delete last 2 messages, typically these are the last user and assistant messages) |
-2
|
end
|
int
|
index of last message to delete; Default = -1 (i.e. delete all messages up to the last one) |
-1
|
Source code in langroid/agent/chat_agent.py
update_history(message, response)
¶
Update the message history with the latest user message and LLM response. Args: message (str): user message response: (str): LLM response
Source code in langroid/agent/chat_agent.py
tool_format_rules()
¶
Specification of tool formatting rules
(typically JSON-based but can be non-JSON, e.g. XMLToolMessage),
based on the currently enabled usable ToolMessages
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
formatting rules |
Source code in langroid/agent/chat_agent.py
tool_instructions()
¶
Instructions for tools or function-calls, for enabled and usable Tools. These are inserted into system prompt regardless of whether we are using our own ToolMessage mechanism or the LLM's function-call mechanism.
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
concatenation of instructions for all usable tools |
Source code in langroid/agent/chat_agent.py
augment_system_message(message)
¶
Augment the system message with the given message. Args: message (str): system message
last_message_with_role(role)
¶
from message_history, return the last message with role role
Source code in langroid/agent/chat_agent.py
last_message_idx_with_role(role)
¶
Index of last message in message_history, with specified role. Return -1 if not found. Index = 0 is the first message in the history.
Source code in langroid/agent/chat_agent.py
nth_message_idx_with_role(role, n)
¶
Index of nth message in message_history, with specified role.
(n is assumed to be 1-based, i.e. 1 is the first message with that role).
Return -1 if not found. Index = 0 is the first message in the history.
Source code in langroid/agent/chat_agent.py
update_last_message(message, role=Role.USER)
¶
Update the last message that has role role in the message history.
Useful when we want to replace a long user prompt, that may contain context
documents plus a question, with just the question.
Args:
message (str): new message to replace with
role (str): role of message to replace
Source code in langroid/agent/chat_agent.py
delete_last_message(role=Role.USER)
¶
Delete the last message that has role role from the message history.
Args:
role (str): role of message to delete
Source code in langroid/agent/chat_agent.py
handle_message_fallback(msg)
¶
Fallback method for the "no-tools" scenario, i.e., the current msg
(presumably emitted by the LLM) does not have any tool that the agent
can handle.
NOTE: The msg may contain tools but either (a) the agent is not
enabled to handle them, or (b) there's an explicit recipient field
in the tool that doesn't match the agent's name.
Uses the self.config.non_tool_routing to determine the action to take.
This method can be overridden by subclasses, e.g., to create a "reminder" message when a tool is expected but the LLM "forgot" to generate one.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
msg
|
str | ChatDocument
|
The input msg to handle |
required |
Returns: Any: The result of the handler method
Source code in langroid/agent/chat_agent.py
unhandled_tools()
¶
The set of tools that are known but not handled. Useful in task flow: an agent can refuse to accept an incoming msg when it only has unhandled tools.
Source code in langroid/agent/chat_agent.py
enable_message(message_class, use=True, handle=True, force=False, require_recipient=False, include_defaults=True)
¶
Add the tool (message class) to the agent, and enable either - tool USE (i.e. the LLM can generate JSON to use this tool), - tool HANDLING (i.e. the agent can handle JSON from this tool),
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
message_class
|
Optional[Type[ToolMessage] | List[Type[ToolMessage]]]
|
The ToolMessage class OR List of such classes to enable, for USE, or HANDLING, or both. If this is a list of ToolMessage classes, then the remain args are applied to all classes. Optional; if None, then apply the enabling to all tools in the agent's toolset that have been enabled so far. |
required |
use
|
bool
|
IF True, allow the agent (LLM) to use this tool (or all tools), else disallow |
True
|
handle
|
bool
|
if True, allow the agent (LLM) to handle (i.e. respond to) this tool (or all tools) |
True
|
force
|
bool
|
whether to FORCE the agent (LLM) to USE the specific
tool represented by |
False
|
require_recipient
|
bool
|
whether to require that recipient be specified
when using the tool message (only applies if |
False
|
include_defaults
|
bool
|
whether to include fields that have default values, in the "properties" section of the JSON format instructions. (Normally the OpenAI completion API ignores these fields, but the Assistant fn-calling seems to pay attn to these, and if we don't want this, we should set this to False.) |
True
|
Source code in langroid/agent/chat_agent.py
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 | |
set_output_format(output_type, force_tools=None, use=None, handle=None, instructions=None, is_copy=False)
¶
Sets output_format to output_type and, if force_tools is enabled,
switches to the native Langroid tools mechanism to ensure that no tool
calls not of output_type are generated. By default, force_tools
follows the use_tools_on_output_format parameter in the config.
If output_type is None, restores to the state prior to setting
output_format.
If use, we enable use of output_type when it is a subclass
of ToolMesage. Note that this primarily controls instruction
generation: the model will always generate output_type regardless
of whether use is set. Defaults to the use_output_format
parameter in the config. Similarly, handling of output_type is
controlled by handle, which defaults to the
handle_output_format parameter in the config.
instructions controls whether we generate instructions specifying
the output format schema. Defaults to the instructions_output_format
parameter in the config.
is_copy is set when called via __getitem__. In that case, we must
copy certain fields to ensure that we do not overwrite the main agent's
setings.
Source code in langroid/agent/chat_agent.py
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 | |
disable_message_handling(message_class=None)
¶
Disable this agent from RESPONDING to a message_class (Tool). If
message_class is None, then disable this agent from responding to ALL.
Args:
message_class: The ToolMessage class to disable; Optional.
Source code in langroid/agent/chat_agent.py
disable_message_use(message_class)
¶
Disable this agent from USING a message class (Tool).
If message_class is None, then disable this agent from USING ALL tools.
Args:
message_class: The ToolMessage class to disable.
If None, disable all.
Source code in langroid/agent/chat_agent.py
disable_message_use_except(message_class)
¶
Disable this agent from USING ALL messages EXCEPT a message class (Tool) Args: message_class: The only ToolMessage class to allow
Source code in langroid/agent/chat_agent.py
get_tool_messages(msg, all_tools=False)
¶
Extracts messages and tracks whether any errors occurred. If strict mode was enabled, disables it for the tool, else triggers strict recovery.
Source code in langroid/agent/chat_agent.py
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 | |
truncate_message(idx, tokens=5, warning='...[Contents truncated!]', inplace=True)
¶
Truncate message at idx in msg history to tokens tokens.
If inplace is True, the message is truncated in place, else it LEAVES the original message INTACT and returns a new message
Source code in langroid/agent/chat_agent.py
llm_response(message=None)
¶
Respond to a single user message, appended to the message history, in "chat" mode Args: message (str|ChatDocument): message or ChatDocument object to respond to. If None, use the self.task_messages Returns: LLM response as a ChatDocument object
Source code in langroid/agent/chat_agent.py
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 | |
llm_response_async(message=None)
async
¶
Async version of llm_response. See there for details.
Source code in langroid/agent/chat_agent.py
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 | |
init_message_history()
¶
Initialize the message history with the system message and user message
Source code in langroid/agent/chat_agent.py
llm_response_messages(messages, output_len=None, tool_choice='auto')
¶
Respond to a series of messages, e.g. with OpenAI ChatCompletion Args: messages: seq of messages (with role, content fields) sent to LLM output_len: max number of tokens expected in response. If None, use the LLM's default model_max_output_tokens. Returns: Document (i.e. with fields "content", "metadata")
Source code in langroid/agent/chat_agent.py
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 | |
llm_response_messages_async(messages, output_len=None, tool_choice='auto')
async
¶
Async version of llm_response_messages. See there for details.
Source code in langroid/agent/chat_agent.py
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 | |
llm_response_forget(message=None)
¶
LLM Response to single message, and restore message_history. In effect a "one-off" message & response that leaves agent message history state intact.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
message
|
str | ChatDocument
|
message to respond to. |
None
|
Returns:
| Type | Description |
|---|---|
ChatDocument
|
A Document object with the response. |
Source code in langroid/agent/chat_agent.py
llm_response_forget_async(message=None)
async
¶
Async version of llm_response_forget. See there for details.
Source code in langroid/agent/chat_agent.py
chat_num_tokens(messages=None)
¶
Total number of tokens in the message history so far.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
messages
|
Optional[List[LLMMessage]]
|
if provided, compute the number of tokens in this list of messages, rather than the current message history. |
None
|
Returns: int: number of tokens in message history
Source code in langroid/agent/chat_agent.py
message_history_str(i=None)
¶
Return a string representation of the message history Args: i: if provided, return only the i-th message when i is postive, or last k messages when i = -k. Returns: