Using Tavily Search with Langroid¶
1. Set Up Tavily¶
-
Access Tavily Platform
Go to the Tavily Platform. -
Sign Up or Log In
Create an account or log in if you already have one. -
Get Your API Key
- Navigate to your dashboard
-
Copy your API key
-
Set Environment Variable
Add the following variable to your.env
file: ```env TAVILY_API_KEY=
2. Use Tavily Search with Langroid¶
Installation¶
Code Example¶
import langroid as lr
from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
from langroid.agent.tools.tavily_search_tool import TavilySearchTool
# Configure the ChatAgent
config = ChatAgentConfig(
name="search-agent",
llm=lr.language_models.OpenAIGPTConfig(
chat_model=lr.language_models.OpenAIChatModel.GPT4
),
use_tools=True
)
# Create the agent
agent = ChatAgent(config)
# Enable Tavily search tool
agent.enable_message(TavilySearchTool)
¶
import langroid as lr
from langroid.agent.chat_agent import ChatAgent, ChatAgentConfig
from langroid.agent.tools.tavily_search_tool import TavilySearchTool
# Configure the ChatAgent
config = ChatAgentConfig(
name="search-agent",
llm=lr.language_models.OpenAIGPTConfig(
chat_model=lr.language_models.OpenAIChatModel.GPT4
),
use_tools=True
)
# Create the agent
agent = ChatAgent(config)
# Enable Tavily search tool
agent.enable_message(TavilySearchTool)
3. Perform Web Searches¶
Use the agent to perform web searches using Tavily's AI-powered search.
# Simple search query
response = agent.llm_response(
"What are the latest developments in quantum computing?"
)
print(response)
# Search with specific number of results
response = agent.llm_response(
"Find 5 recent news articles about artificial intelligence."
)
print(response)
¶
# Simple search query
response = agent.llm_response(
"What are the latest developments in quantum computing?"
)
print(response)
# Search with specific number of results
response = agent.llm_response(
"Find 5 recent news articles about artificial intelligence."
)
print(response)
4. Custom Search Requests¶
You can also customize the search behavior by creating a TavilySearchTool instance directly:
from langroid.agent.tools.tavily_search_tool import TavilySearchTool
# Create a custom search request
search_request = TavilySearchTool(
query="Latest breakthroughs in fusion energy",
num_results=3
)
# Get search results
results = search_request.handle()
print(results)